The Impact of Stand-Biased Desks in Classrooms on Calorie Expenditure in Children

Mark E. Benden, CPE, PhD, Jamilia J. Blake, PhD, Monica L. Wendel, DrPH, MA, and John C. Huber Jr, PhD

Childhood obesity is a public health concern with significant health and economic impacts. We conducted a prospective experimental study in 4 classrooms in central Texas to determine the effect of desks that encourage standing rather than sitting on caloric expenditure in children. Students were monitored with calorie expenditure-measuring arm-bands worn for 10 days in the fall and spring. The treatment group experienced significant increases in caloric expenditure over the control group, a finding that has implications for policy and practice. (Am J Public Health. Published online ahead of print March 17, 2011: e1-e4. doi:10.2105/AJPH.2010.300072)

A 2010 report released by the Trust for America’s Health and the Robert Wood Johnson Foundation entitled F as in Fat: How Obesity Threatens America’s Future, 2010 states that the percentage of overweight and obese children is at or above 30% in 30 states. The probability of obese children becoming obese adults is significantly higher than is the probability among their nonobese counterparts. Obese children who grow into obese adults also have more severe health risks than do individuals with adult-onset obesity, including potential for a shorter lifespan.

School-based physical activity programs and environmental changes have proven helpful in increasing health-enhancing physical activities for children. However, these activities typically concentrate on small portions of a child’s day and miss the opportunity to increase health-enhancing physical activities throughout the entire school day, particularly during instructional time. The pilot study described in this brief targeted childhood obesity by increasing passive calorie expenditure in the classroom. Classroom environments were modified to increase standing (rather than sitting) by replacing students’ and teachers’ traditional seated desks with standing height desks specifically manufactured for this study (Artco-Bell, Temple, TX); standing height stools were also provided to allow students to sit at their discretion. This concept biased the classroom environment toward standing, encouraging healthy movements, and increased energy expenditure.

METHODS

The intervention was pilot tested during the 2009 to 2010 school year in 4 first-grade classrooms in an ethnically diverse elementary school in central Texas; the treatment and control classrooms were randomly selected. All of the desks in the 2 treatment classrooms were converted to stand–sit workstations with stools, whereas the control classrooms remained unaltered for the entire school year. Students were told about the desks during the consent–assent process, and their teachers reinforced that they could stand or sit at their discretion. In addition to calorie expenditure, our study investigated children’s standing activity after giving them no specific instruction that they must stand or sit for any portion of their day. By the 12th week of school after the treatment, students had acclimated to their desks; 70% of the students were not using stools at all, standing 100% of the time; and the other 30% were standing, on average, approximately 75% of the time. Differences in energy expenditure for a variety of activities with the current algorithm were 1.7%, with a high degree of repeatability.

We explored the longitudinal structure of the data collected in this study by using multilevel statistical models. Time was included as a continuous variable measured in hours where 0=baseline, 0.5=30 minutes, and 1=60 minutes. The lowest level of the data hierarchy (level 1) was the repeated measurements of calories burned per minute ($y_{ij}$) on each individual and the individuals themselves constituted the second level of the data hierarchy (level 2) as shown in the following equation:
(1) \[ y_{ij} = b_0 + b_1 \text{Time}_{ij} + b_2 \text{Treatment}_i \times \text{Time}_{ij} + b_3 \text{Treatment}_i \times \text{Time}_{ij}^2 + b_4 \text{Treatment}_i \times \text{Time}_{ij}^3 + u_{0i} (\text{between participant residual - random intercept}) + u_{1ij} \times \text{Time}_{ij} (\text{between participant residual - random slope}) + e_{ij} (\text{within participant residual}) \]

We accomplished model building by using a forward selection procedure in which powers of time were added 1 at a time to the base model including treatment group effects only. We then progressively added interaction terms between time and treatment effects and evaluated them with likelihood ratio tests.

RESULTS

Of the 13 students who did not complete the study, 4 left the study because of relocation in which the student was no longer attending the same school; these students did not differ from those who completed the study in any baseline measures. The other 9 students did not complete the study as a result of excessive absence and also did not differ from those who completed the study in any baseline measures.

Figure 1 displays lowess curves of the raw data for the calories burned per minute over time (8:00 AM—10:00 AM) for the treated and control groups. We selected the analysis time period noted in Figure 1 out of the full school day because this was the time of day when both groups were in their classrooms at their primary workstation doing the same tasks.

The results of the model presented in Table 1 indicate that the treatment group (n = 31) burned an average of 0.18 kilocalories per minute more than did the control group (n = 27; P = 0.022). Students in the treatment group burned 17% more calories than did those in the control group (treatment: mean initial weight = 25.2 kg; control: mean initial weight = 24.1 kg). Within the subset of participants over the 85th percentile in weight for their age and gender (treatment: mean initial weight = 30.3 kg [n = 12]; control: mean initial weight = 28.2 kg [n = 9]),19 children in the treatment group experienced a 32% increase in calorie expenditure compared with those in the control group (1.56 kcal/min vs 1.18 kcal/min). (The mean weights are given to show how similar the controls were to the treatments in the 2 sets of classrooms, but not to indicate results of caloric expenditure.)

DISCUSSION

Although our results are limited because of sample size, they are promising and provide a basis for further research on cost-effectiveness of stand–sit desks in preventing childhood obesity. The implementation cost of this intervention is relatively low; the stand–sit desk and stool units cost approximately 20% more than did the standard ones. Other than the initial investment, schools incur no ongoing costs and give up no instructional time. Further, interviews with teachers and parents of students in the treatment group indicated a positive effect on child behavior and classroom performance, which is supported by the

![Figure 1—Lowess curves of the raw data for the calories burned per minute over time (8:00 AM—10:00 AM) among central Texas elementary school students using stand-biased desks versus control group: 2009–2010.](image-url)

**TABLE 1—Calories Burned per Minute Over Time Among Central Texas Elementary School Students Using Stand-Biased Desks Versus Control Group: 2009–2010**

<table>
<thead>
<tr>
<th>Model Parameter</th>
<th>b (SE)</th>
<th>Z</th>
<th>P</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fixed effects</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( b_0 ) (intercept)</td>
<td>-338.815 (19.538)</td>
<td>-17.341</td>
<td>&lt; .001</td>
<td>-377.110, -300.520</td>
</tr>
<tr>
<td>( b_1 ) (treatment)</td>
<td>0.182 (0.080)</td>
<td>2.287</td>
<td>.022</td>
<td>0.026, 0.338</td>
</tr>
<tr>
<td>( b_2 ) (treatment \times time)</td>
<td>109.467 (6.161)</td>
<td>17.769</td>
<td>&lt; .001</td>
<td>97.393, 121.542</td>
</tr>
<tr>
<td>( b_3 ) (treatment \times time²)</td>
<td>-11.729 (0.646)</td>
<td>-18.156</td>
<td>&lt; .001</td>
<td>-12.995, -10.463</td>
</tr>
<tr>
<td>( b_4 ) (treatment \times time³)</td>
<td>0.418 (0.023)</td>
<td>18.552</td>
<td>&lt; .001</td>
<td>0.374, 0.462</td>
</tr>
<tr>
<td><strong>Random effects</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( var(u_{0i}) \times \text{time} )</td>
<td>0.001 (0.000)</td>
<td>2.167</td>
<td>.03</td>
<td>0.000, 0.001</td>
</tr>
<tr>
<td>( var(u_{1ij}) \times \text{time} )</td>
<td>0.053 (0.022)</td>
<td>2.359</td>
<td>.018</td>
<td>0.023, 0.121</td>
</tr>
<tr>
<td>( var(\epsilon_{ij}) )</td>
<td>0.120 (0.002)</td>
<td>54.730</td>
<td>&lt; .001</td>
<td>0.116, 0.124</td>
</tr>
</tbody>
</table>

Note. CI = confidence interval. The time period during which data were collected was 8:00 AM to 10:30 AM.
literature.\textsuperscript{20} The majority of parents (70\%) whose children were in the treatment classrooms felt that standing in the classroom positively affected their child’s classroom behavior. A teacher in one of the treatment classrooms stated:

When standing, the students were more focused, and I could keep their attention for longer. . . . I have one student with severe ADHD [attention-deficit/hyperactivity disorder], and this really helped him academically.

Additional research will also explore these effects, aiming to document academic incentives for schools to use stand–sit desks.

Our study contributes unique information to the knowledge base in that we used measures of caloric expenditure; other studies have measured only movement using an accelerometer.\textsuperscript{21–23} Recent research into sedentary behaviors has indicated health outcomes beyond caloric expenditure for reducing seated time, including improved metabolic profiles, improvements in high-density lipoprotein production, lipoprotein lipase activity, and blood glucose control.\textsuperscript{24–27} In addition to these findings, Hamilton et al.\textsuperscript{28,29} reported that standing muscle activity causes isometric contraction of postural muscles, which produces electromyographic and skeletal muscle lipoprotein lipase changes resulting in additional biomarkers for health benefits. A larger longitudinal study is warranted that should examine students’ in-school and out-of-school activity, as well as caloric consumption to ascertain whether the students compensate for the extra calories burned by altering other behaviors. If the stand–sit desks are found to have similar effects on a larger scale, this finding would have significant policy implications for schools, districts, states, and the country and could force us to rethink traditional classroom design.

Correspondence should be sent to Monica L. Wendel, DrPH, MA, Center for Community Health Development, Texas A&M Health Science Center School of Rural Public Health, 1266 TAMU, College Station, TX 77843-1266 (e-mail: mwendel@tamu.edu). Reprints can be ordered at http://www.ajph.org by clicking the “Reprints/Errata” link. This article was accepted November 10, 2010.

Contributors
M.E. Benden designed the study, led the implementation and data collection, and provided substantial content for the article. J. J. Blake developed the survey for parents and interview protocol for teachers, led the teacher data collection, and contributed to the writing of the article. M.L. Wendel led the parent survey data collection, assisted in interviewing teachers, and helped in the writing of the article. J. C. Huber assisted in the study design and conducted the main analysis of the student data, he also contributed to the analysis section of the article.

Acknowledgments
The authors wish to thank and acknowledge the funders that made this study possible: the United Way of the Brazos Valley, the Texas A&M School of Rural Public Health, and Arco-Bell. This study was also made possible, in part, by the Prevention Research Centers Program at the Centers for Disease Control and Prevention through cooperative agreement U48DP000045.

Note. The conclusions of this article are those of the authors and do not represent the official position of the Centers for Disease Control and Prevention.

Human Participant Protection
The study was approved by the institutional review board at Texas A&M University and the Research Review Board of the College Station Independent School District.

References


